Trong mp Oxy , cho đường thẳng :2x – 3y + 1 = 0. Ảnh của nó qua với là
A.2x + 3y – 11 = 0
B.2x – 3y – 11 = 0
C.2x + 3y + 11 = 0
D. 2x – 3y + 11 = 0
Đáp án B
Phép tịnh tiến theo biến đường thẳng d thành d'.
Và biến mỗi điểm M (x, y) thuộc d thành điểm M' (x'; y') thuộc d'.
Áp dụng biểu thức tọa độ: ta có, (1)
Vì điểm M (x, y) thuộc đường thẳng d nên: 2x - 3y+ 1 = 0 (2)
Thay (1) vào (2) ta được:
2( x' - 3) -3 (y'+2)+ 1 = 0 hay 2x'- 3y'- 11 = 0
=>Phương trình đường thẳng cẩn tìm: 2x – 3y – 11 = 0
Trong mp Oxy, cho đường tròn (C): – 4x + 2y + 1 = 0. Phương trình của đường tròn (C’) đối xứng với (C) qua trục hoành
Cho đường thẳng (d): –3x – y + 5 = 0, đường thẳng (d’): –3x – y – 2 = 0. Tìm tọa độ vectơ có giá vuông góc với đường thằng (d) để (d’) là ảnh của (d) qua
Cho góc nhọn xOy và một điểm A thuộc miền trong góc này. Tìm điểm B Ox, C Oy sao cho chu vi tam giác ABC là bé nhất. Xác định vị trí điểm B và C
Trong mặt phẳng Oxy, cho đường thẳng (d): 4x + y – 7 = 0. Đường thẳng đối xứng với (d) qua trục tung có phương trình:
Cho A(3;–2) và B( 6; 9). Nếu (A) = A’ , (B) = B’ thì A’B’ có độ dài bằng
Trong mp Oxy, cho đường tròn. Ảnh (C’) của (C) qua phép tịnh tiến theo vectơ là
Trong mp Oxy cho đường thẳng (d): x – 2y – 3 = 0. Viết phương trình (d1) là ảnh của (d) qua phép đối xứng qua
Cho đường thẳng (d): x – 3y = 0, đường thẳng (d’): x – 3y – 10 = 0. Tìm tọa độ vectơ có giá vuông góc với đường thằng (d) để (d’) là ảnh của (d) qua
Trong mp Oxy, cho đường tròn . Ảnh (C’) của (C). qua phép tịnh tiến theo vectơ là
Cho đt (d): x – 4y + 2 = 0. Lấy đối xứng của (d) qua Oy ta được đường thẳng có phương trình:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(0;−1) , bán kính R = 2. Ảnh của (C) qua việc thực hiện liên tiếp phép quay tâm O góc quay 180và phép vị tự tâm O tỉ số 2
Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : x2 + y2 – 2x + 2y + 1 = 0
Phương trình đường tròn (C’) đối xứng (C) qua trục tung là:
Cho đt (d): x – 4y + 2 = 0. Lấy đối xứng của (d) qua Ox ta được đường thẳng có phương trình