Cho hình chóp tứ giác đều S.BACD có cạnh đáy bằng a. Các điểm M; N; P lần lượt là trung điểm của SA; SB; SC. Mặt phẳng (MNP) cắt hình chóp theo 1 thiết diện có diện tích bằng?
A.
B.
C.
D.
+ Gọi Q là trung điểm của SD.
Tam giác SAD có M; Q lần lượt là trung điểm của SA; SD suy ra MQ // AD
Tam giác SBC có N ; P lần lượt là trung điểm của SB; SC suy ra NP // BC
Mặt khác AD // BC suy ra MQ // NP và MQ= NP nên MNPQ là hình bình hành .
+ (MNP) và ( SAD) có NP // AD nên chúng cắt nhau theo giao tuyến Mx // AD// BC. – đó chính là MQ, thiết diện của hình chóp cắt bởi (MNP) là hình bình hành : MNPQ.
Do S. ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông cạnh a và có diện tích là:
Tứ giác MNPQ là hình vuông có độ dài cạnh là:
Vậy diện tích MNPQ là
Chọn C.
Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và (SGC).
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD; BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?
Cho tứ giác ABCD có AC và BD căt nhau tại O. Một điểm S không thuộc mp (ABCD). Trên đoạn SC lấy 1 điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là
Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I; J lần lượt là trung điểm của SA; SB. Hỏi khẳng định nào sau đây là sai.
Cho tứ diện S. ABC. Lấy M thuộc SB; N thuộc AC và I thuộc SC sao cho MI không song song với BC; NI không song song với SA. Gọi K là giao điểm của MI và BC. Tìm giao tuyến của (MNI) với (SAB).
Cho tứ diện ABCD ; gọi G là trọng tâm tam giác BCD và M là trung điểm CD; I là điểm ở trên đoạn thẳng AG; BI cắt (ACD) tại J. Chọn khẳng định sai?
Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?
Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là
Cho tứ diện S.ABCD . Gọi L; M; N lần lượt là các điểm trên các cạnh SA; SB và AC sao cho LM không song song với AB ; LN không song song với SC. Mặt phẳng (LMN) cắt các cạnh AB; BC; SC lần lượt tại K; I; J. Ba điểm nào sau đây thẳng hàng
Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M . Tìm giao tuyến của mặt phẳng (ADM) và (SAC)?
Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD)
Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)
Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP= 2 PD. Giao điểm của CD và mp (MNP) là giao điểm của: