Cho hình chóp S.ABCD có đáy không là hình thang. Trên SC lấy điểm M. Gọi N là giao điểm của của SD và ( AMB). Tìm mện đề đúng?
A. 3 đường thẳng AB; CD; MN đôi một song song
B. 3 đường thẳng AB; CD; MN đôi một cắt nhau
C. 3 đường thẳng AB; CD; MN đồng quy
D. 3 đường thẳng AB; CD; MN cùng thuộc 1 mặt phẳng
Gọi giao điểm của AD và BC là I.
Trong mặt phẳng (SBC) , gọi K là giao điểm của BM và SI. Trong mặt phẳng (SAD) , gọi N là giao điểm AK và SD.
Khi đó N là giao điểm của đường thẳng SD với mặt phẳng (AMB).
Gọi giao điểm của AB và CD là O. Suy ra
+ O thuộc ( AMB).
+ O thuộc CD mà suy ra O thuộc ( SCD).
Do đó (1)
Mà giao tuyến của (AMB) và ( SCD) là MN (2)
Từ (1) và (2) , suy ra O thuộc MN.
Vậy ba đường thẳng AB; CD; MN đồng quy.
Chọn C.
Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và (SGC).
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD; BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?
Cho tứ giác ABCD có AC và BD căt nhau tại O. Một điểm S không thuộc mp (ABCD). Trên đoạn SC lấy 1 điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là
Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I; J lần lượt là trung điểm của SA; SB. Hỏi khẳng định nào sau đây là sai.
Cho tứ diện S. ABC. Lấy M thuộc SB; N thuộc AC và I thuộc SC sao cho MI không song song với BC; NI không song song với SA. Gọi K là giao điểm của MI và BC. Tìm giao tuyến của (MNI) với (SAB).
Cho tứ diện ABCD ; gọi G là trọng tâm tam giác BCD và M là trung điểm CD; I là điểm ở trên đoạn thẳng AG; BI cắt (ACD) tại J. Chọn khẳng định sai?
Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?
Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là
Cho tứ diện S.ABCD . Gọi L; M; N lần lượt là các điểm trên các cạnh SA; SB và AC sao cho LM không song song với AB ; LN không song song với SC. Mặt phẳng (LMN) cắt các cạnh AB; BC; SC lần lượt tại K; I; J. Ba điểm nào sau đây thẳng hàng
Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M . Tìm giao tuyến của mặt phẳng (ADM) và (SAC)?
Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD)
Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)
Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP= 2 PD. Giao điểm của CD và mp (MNP) là giao điểm của: