Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều, chiều cao bằng cạnh đáy. Thiết diện của hình lăng trụ và mặt phẳng qua B' vuông góc với A'C là
A. Hình thang cân.
B. Hình thang vuông.
C. Hình chữ nhật
D. Hình vuông
Đáp án B
Gọi M, M′, N, R lần lượt là trung điểm của AC, A′C′, AM và AB.
Tam giác A′B′C′ đều suy ra B′M′A′C′.
Mà AA′ vuông góc với đáy (A′B′C′) ⇒ AA′B′M′.
Vậy B′M′ vuông góc với (ACC′A′) ⇒ B′M′A′C.
Gọi I là trung điểm của AA′, ta có A′C // MI.
Mà M′A′AM là hình vuông ⇒ M′NMI.
Do đó M′NA′C.
Suy ra mặt cắt là mp(B′M′N)
Mặt phẳng này cắt hai mặt phẳng song song (ABC) và (A′B′C′) theo hai giao tuyến B′M′ và NR song song nhau.
Mặt khác B′M′(ACC′A′) ⇒ B′M′M′N.
Vậy B′M′NR là hình thang vuông.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và . Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi là góc giữa đường thẳng SB với mặt phẳng (SCD), tính sin biết rằng SB = a.
Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, có AD = CD = a, AB = 2a. Cạnh bên SA vuông góc với đáy (ABCD), E là trung điểm của AB. Chỉ ra mệnh đề sai trong các mệnh đề sau:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA(ABC). Mặt phẳng (P) đi qua trung điểm M của AB và vuông góc với SB cắt AC, SC, SB lần lượt tại N, P, Q. Tứ giác MNPQ là hình gì?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và SC = . Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Khẳng định nào sau đây là sai?
Cho hình chóp S.ABC có , SA = SB = SC. Gọi I là hình chiếu vuông góc của S lên mp(ABC). Chọn khẳng định đúng trong các khẳng định sau
Cho hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh a, tâm O, đường cao AA'; SO = 2a. Gọi M là điểm thuộc đoạn OA' (MA';MO). Mặt phẳng () đi qua M và vuông góc với AA'. Đặt AM = x. Tính diện tích S của thiết diện tạo bởi () với hình chóp S.ABC.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, . Cạnh bên SA = 2a và vuông góc với đáy. Mặt phẳng () đi qua A vuông góc với SC. Tính diện tích S của thiết diện tạo bởi () với hình chóp đã cho.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp(ABCD), SA= . Gọi () là mặt phẳng qua A và vuông góc với SB. Mặt phẳng () cắt hình chóp theo một thiết diện có diện tích S. Tính S theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp(ABCD). Gọi () là mặt phẳng qua A và vuông góc với SB. Mặt phẳng () cắt hình chóp theo thiết diện là hình gì?