Giá trị của tan(π/4) là
A. 1
B. 22
C. -22
D. -1
Chọn A.
Trong tam giác ABC, đẳng thức nào dưới đây luôn đúng?
Giá trị của biểu thức sau là:
H=sin15°+sin45°+sin75°cos15°+cos45°+cos75°
Chọn đẳng thức đúng:
Cho 0<α<π2 . Trong các khẳng định sau, khẳng định nào đúng?
Cho sinα = 0,6 với π2<α<π . Giá trị của cos2α bằng:
Chứng minh đẳng thức (khi các biểu thức có nghĩa):
1) 1+sin2αcos2α=1+tanα1-tanα
2) sinx+ysinx-y=cos2y-cos2x
Cho π<α<3π2 .
Dấu của biểu thức M=sinπ2-α.cotπ+α là:
Điểm cuối của α thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là không đúng ?
Biết sin4αa+cos4αb=1a+b
Tính giá trị biểu thức A=sin8xa3+cos8αb3
Cho sin2α = a với 0 < α < 90o. Giá trị của sinα + cosα bằng:
Nếu sinx + cos x = 1/2 thì 3sinx + 2cosx bằng
Giá trị của biểu thức A = sin6x + cos6x + 3sin2cos2 là :
Cho sinα=25(π2<α<π) . Tính các giá trị cosα, tanα, cotα.
Số đo radian của góc 225° là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử con xúc xắc xuất hiện mặt b chấm. Xác suất sao cho phương trình x2 – bx + b – 1 = 0 (x là ẩn số) có nghiệm lớn hơn 3 là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có tọa độ các đỉnh A(–2; 0), B(–2; 2), C(4; 2), D(4; 0). Chọn ngẫu nhiên một điểm có tọa độ (x; y) (với x, y là các số nguyên) nằm trong hình chữ nhật ABCD, kể cả các điểm nằm trên cạnh. Gọi A là biến cố “x, y đều chia hết cho 2”. Xác suất của biến cố A là:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam (trong đó có Bình) và 5 học sinh nữ (trong đó có Phương) thành một hàng ngang. Số kết quả thuận lợi cho biến cố A: “Trong 10 học sinh trên không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Bình và Phương cũng không đứng cạnh nhau” là:
Trong buổi sinh hoạt nhóm của lớp, tổ một có 12 học sinh gồm 4 học sinh nữ trong đó có Mai và 8 học sinh nam trong đó có Đức. Chia tổ thành 3 nhóm, mỗi nhóm gồm 4 học sinh và phải có ít nhất 1 học sinh nữ. Số kết quả thuận lợi cho biến cố A: “Mai và Đức cùng một nhóm” là:
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là:
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả 3 màu là:
Một hộp quà đựng 16 dây buộc tóc cùng chất liệu, cùng kiểu dáng nhưng khác nhau về màu sắc. Trong hộp có 8 dây xanh, 5 dây đỏ, 3 dây vàng. Bạn Hoa được chọn ngẫu nhiên 6 dây từ hộp quà để làm phần thưởng cho mình. Xác suất để trong 6 dây bạn Hoa chọn có ít nhất 1 dây vàng và có không quá 4 dây đỏ là:
Có năm đoạn thẳng có độ dài lần lượt là 1 cm, 3 cm, 5 cm, 7 cm và 9 cm. Chọn ngẫu nhiên ba đoạn thẳng trong số năm đoạn thẳng trên. Xác suất để ba đoạn thẳng được chọn lập thành một tam giác là: