Tìm tất cả các giá trị của tham số m để hệ bất phương trình sau có nghiệm.
Ta có bất phương trình - 3x + 2 ≤ 0 ⇔ 1 ≤ x ≤ 2.
Yêu cầu bài toán tương đương với bất phương trình:
m – 2(2m + 1)x + 5m + 3 ≤ 0 (1) có nghiệm x ∈ S = [1;2].
Ta đi giải bài toán phủ định là: Tìm m để bất phương trình (1) vô nghiệm trên S
Tức là bất phương trình f(x) = m - 2(2m + 1)x + 5m + 3 < 0 (2) đúng với mọi x ∈ S.
• m = 0 ta có (2) -2x + 3 < 0 ⇔ x > 3/2 nên (2) không đúng với ∀x ∈ S
• m ≠ 0 tam thức f(x) có hệ số a = m, biệt thức Δ' = - + m + 1
Bảng xét dấu
Phương trình đường thẳng Δ đi qua điểm M(2;-5) và có hệ số góc k = -2 là:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;4), trọng tâm . Biết rằng đỉnh B nằm trên đường thẳng d: x + y + 2 = 0 và đỉnh C có hình chiếu vuông góc trên d là điểm H(2;-4). Giả sử B(a;b). Tính giá trị của biểu thức P = a - 3b.
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x.
A = 2( + + . - ( + )
Cho hai điểm A(1;2) và B(4;6). Tọa độ điểm M trên trục Oy sao cho diện tích tam giác MAB bằng 1 là:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho elip (E) có độ dài trục lớn bằng 12 và độ dài trục bé bằng 6. Phương trình nào sau đây là phương trình của elip (E).
Vectơ pháp tuyến của đường thẳng đi qua hai điểm A(2;3) và B(4;1) là:
Trong mặt phẳng tọa độ Oxy, đường tròn (C) tâm I(-3;4), bán kính R = 6 có phương trình là:
Giá trị của m để bất phương trình x + m(x + 1) - 2(x - 1) > 0 nghiệm đúng với mọi x ∈ [-2;1] là: