Cho tam giác ABC có A(–1; 1); B(5; –3); C(0; 2). Gọi G là trọng tâm của tam giác ABC. Hãy xác định tọa độ của điểm G1 là điểm đối xứng của G qua trục Oy.
A. G1 (4/3;0)
B. G1 (-4/3;3)
C. G1 (-4/3;2)
D. G1 (-4/3;0)
Do G là trọng tâm tam giác ABC nên tọa độ G:
Điểm G1 là điểm đối xứng của G qua trục Oy nên
Đáp án D
Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3).
Tọa độ trọng tâm G của tam gác MNP là:
Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hàng là:
Cho tam giác ABC có A(–2; 2), B(6; –4), đỉnh C thuộc trục Ox. Tìm tọa độ trọng tâm G của tam giác ABC, biết rằng G thuộc trục Oy
Cho M(2; 0), N(2; 2), P(–1; 3) là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tọa độ điểm B là:
Trên mặt phẳng tọa độ Oxy cho tam giác ABC. M, N, P lần lượt là trung điểm cách cạnh BC, CA, AB. Biết M(1; 2); N(3; – 5); P(5; 7). Tọa độ đỉnh A là:
Cho hai điểm A(2; -1), B(3; 0), điểm nào sau đây thẳng hàng với A, B?
Trên mặt phẳng tọa độ Oxy cho các điểm A(–1; 1); B(1; 2); C(4; 0). Tìm tọa độ điểm M sao cho ABCM là hình bình hành là:
Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3).
Tọa độ trung điểm I của đoạn thẳng MN là:
Trong mặt phẳng tọa độ Oxy cho các điểm A(3; 1); B(2; 2); C(1; 16); D(1; –6). Hỏi G(2; –1) là trọng tâm của tam giác nào trong các tam giác sau đây?