Cho bốn đường thẳng:
b. Cặp đường thẳng cắt nhau tại điểm trên trục tung là :
A.
B.
C.
D.
Cặp đường thẳng cắt nhau tại điểm trên trục tung khi chúng có cùng tung độ gốc và có hệ số góc khác nhau.
Hai đường thẳng có hệ số góc khác nhau và có cùng tung độ gốc là 1 nên hai đường thẳng này cắt nhau tại một điểm trên trục tung đó là điểm (0;1).
Phương trình đường thẳng đi qua điểm A(1;11) và song song với đường thẳng là:
Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I (1; 3), cắt hai tia Ox, Oy và cách gốc tọa độ một khoảng bằng .
Biết rằng đồ thị hàm số y = ax + b đi qua điểm E (2; −1) và song song với đường thẳng ON với O là gốc tọa độ và N (1; 3). Tính giá trị biểu thức S =
Cho hàm số bậc nhất y = ax + b. Tìm a và b, biết rằng đồ thị hàm số cắt đường thẳng 1: y = 2x + 5 tại điểm có hoành độ bằng −2 và cắt đường thẳng 2: y = −3x + 4 tại điểm có tung độ bằng −2.
Đường thẳng y = 2x – 4 cắt hai trục Ox, Oy lần lượt tại A và B. Tính diện tích tam giác OAB.
Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Đặt S(x) = f(x) + g(x) và P(x) = f(x) g(x).
Xét các mệnh đề:
i) Nếu y = f(x) và y = g(x) là những hàm số chẵn thì y = S(x) và y = P(x) cũng là những hàm số chẵn
ii) Nếu y = f(x) và y = g(x) là những hàm số lẻ thì y = S(x) là hàm số lẻ và y = P(x) là hàm số chẵn
iii) Nếu y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì y = P(x) là hàm số lẻ
Số mệnh đề đúng là:
Xác định các hệ số của a và b để đồ thị của hàm số y=ax+b đi qua điểm M (1;7) và N(0;3).
Cho hai đường thẳng (d1): y = −3x + m + 2; (d2): y = 4x − 2m − 5. Gọi A (1; ) thuộc (d1), B (2; ) thuộc (d2). Tìm tất cả các giá trị của m để A và B nằm về hai phía của trục hoành.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm N (4; −1) và vuông góc với đường thẳng 4x – y + 1 = 0. Tính tích P = ab.
Tọa độ các giao điểm của đồ thị hàm số với các trục Ox, Oy lần lượt là:
Cho đường thẳng . Đường thẳng đi qua A(2;4) và song song với có phương trình là: