Tìm tất cả các giá trị thực của tham số m để f(x) = m(x–m) – (x–1) không âm với mọi x(–∞;m+1]
A. m = 1
B. m > 1
C. m 1
D. m ≥ 1
Chọn C
Ta có: f(x) ≥ 0 tương đương: (1)
+ Xét m = 1 thì (1) đúng với mọi x. (thỏa mãn)
+ Xét m > 1 thì ( 1) trở thành: x ≥ m+1không thỏa điều kiện nghiệm đã cho.
+ Xét m < 1 thì ( 1) trở thành: x ≤ m+1 thỏa điều kiện nghiệm đã cho.
Vậy m 1
Cho nhị thức bậc nhất f(x) = 23x – 20. Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình có nghiệm
Tập nghiệm của bất phương trình sau có bao nhiêu nghiệm nguyên âm?
Bất phương trình nào sau đây không tương đương với bất phương trình x+ 5≥ 0 ?
Gọi S là tập tất cả các giá trị của x để f(x) = mx+ 6 – 2x – 3m luôn âm khi m < 2. Hỏi tập hợp nào sau đây là phần bù của tập S?
Tập nghiệm của bất phương trình sau có bao nhiêu nghiệm nguyên âm