Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa, 6 học sinh giỏi cả Toán và Lý, 5 học sinh giỏi cả Hóa và Lý, 4 học sinh giỏi cả Toán và Hóa, 3 học sinh giỏi cả ba môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là:
A. 19
B. 18
C. 31
D. 49
Đáp án A
Theo giả thiết đề bài cho, ta có biểu đồ Ven:
Dựa vào biểu đồ Ven ta thấy:
Số học sinh chỉ giỏi Toán và Lý (không giỏi Hóa) là: 6−3=3 (em)
Số học sinh chỉ giỏi Toán và Hóa (không giỏi Lý) là: 4−3=1 (em)
Số học sinh chỉ giỏi Lý và Hóa (không giỏi Toán) là: 5−3=2 (em)
Số học sinh chỉ giỏi một môn Toán là: 10−3−3−1=3 (em)
Số học sinh chỉ giỏi một môn Lý là: 10−3−3−2=2 (em)
Số học sinh chỉ giỏi một môn Hóa là: 11−1−3−2=5 (em)
Số học sinh giỏi ít nhất một trong ba môn là:
3 + 2 + 5 + 1 + 2 + 3 + 3 = 19 (em)
Cho tập khác rỗng . Với giá trị nào của a thì A sẽ là một đoạn có độ dài 5?
Cho m là một tham số thực và hai tập hợp khác rỗng A = [1−2m; m+3],
B = {x ∈ R|x ≥ 8−5m}. Tất cả các giá trị m để A ∩ B = ∅ là:
Cho các tập hợp khác rỗng và B = (−∞;−3) ∪ [3;+∞). Tập hợp các giá trị thực của m để A ∩ B ≠ ∅ là:
Cho hai tập khác rỗng A = (m−1; 4]; B = (−2; 2m + 2), m ∈ R. Tìm m để A ∩ B ≠ ∅
Cho 2 tập khác rỗng A = (m − 1; 4]; B = (−2; 2m + 2), m ∈ R. Tìm m để A ⊂ B