Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
d) ME cắt đường tròn (O) tại F (khác E). Chứng minh: ∠(MOF) = ∠(MEH )
d) Ta có: ∠(CFE) = 900 (F thuộc đường tròn đường kính CE)
Lại có CF là đường cao nên MC2 = MF.ME
Tương tự, ta có: MC2 = MH.MO
⇒ ME.MF = MH.MO
⇒
Xét ΔMOF và ΔMEN có:
∠(FMO) chung
⇒ ΔMOF ∼ ΔMEN (c.g.c)
⇒ ∠(MOF) = ∠(MEH)
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
a) Chứng minh MD là tiếp tuyến của đường tròn (O).
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
c) Chứng minh HA2+HB2+CD2/2=4R2
Cho biểu thức :
A=15√x-11x+2√x-3+3√x-21-√x-3√x+3(x≥0;x≠1)
a) Thu gọn biểu thức A.
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
b) Kẻ đường kính CE của đường tròn (O). Tính MC, DE theo R.
Cho hàm số y = –2x + 3 có đồ thị (d1) và hàm số y = x – 1 có đồ thị (d2)
b) Xác định hệ số a và b biết đường thẳng (d3): y = ax + b song song với (d2) và cắt (d1) tại điểm nằm trên trục tung.
Cho hàm số y = –2x + 3 có đồ thị (d1) và hàm số y = x – 1 có đồ thị (d2)
a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ.
Cho biểu thức :
A=15√x-11x+2√x-3+3√x-21-√x-3√x+3(x≥0;x≠1)
b) Tìm x nguyên để A nguyên.