Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng \[{d_1}:x - 7y + 17 = 0,\] \[{d_2}:x + y - 5 = 0\]. Viết phương trình đường thẳng d qua điểm M(0;1) tạo với \[{d_1},{d_2}\;\] một tam giác cân tại giao điểm của \[{d_1},{d_2}\].
A.\[x + 3y - 3 = 0\;\] hoặc \[3x - y + 1 = 0\]
B.\[5x + 3y - 3 = 0\;\;\] hoặc \[3x - 5y + 1 = 0\]
C.\[2x + 3y - 3 = 0\;\;\] hoặc \[3x - y - 1 = 0\;\]
D.\[x + 3y = 0\;\] hoặc \[x - y + 1 = 0\]
Phương trình đường phân giác góc tạo bởi \[{d_1},{d_2}\] là:
\(\frac{{|x - 7y + 17|}}{{\sqrt {{1^2} + {{( - 7)}^2}} }} = \frac{{|x + y - 5|}}{{\sqrt {{1^2} + {1^2}} }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + 6y - 21 = 0({\Delta _1})}\\{3x - y - 4 = 0({\Delta _2})}\end{array}} \right.\)
Đường thẳng cần tìm đi qua M(0;1) và vuông góc với \[{{\rm{\Delta }}_1},{{\rm{\Delta }}_2}\]
+ Gọi \[{d_3}\] là đường thẳng vuông góc với \[{{\rm{\Delta }}_1}\] thì \[{d_3}\] có dạng: \[3x - y + c = 0\]
\[{d_3}\] đi qua điểm M(0;1) nên\[3.0 - 1 + c = 0 \Leftrightarrow c = 1\] hay\[3x - y + 1 = 0\]
+ Gọi \[{d_4}\] là đường thẳng vuông góc với \[{{\rm{\Delta }}_2}\] thì \[{d_4}\] có dạng:\[x + 3y + c = 0\]
\[{d_4}\] đi qua điểm M(0;1) nên \[0 + 3.1 + c = 0 \Leftrightarrow c = - 3\] hay\[x + 3y - 3 = 0\]
KL: \[x + 3y - 3 = 0\] và\[3x - y + 1 = 0\]
Đáp án cần chọn là: A
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0),B(−2;4),C(−1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng \[\left( \Delta \right):3x - y - 5 = 0\;\]sao cho hai tam giác MAB,MCD có diện tích bằng nhau.
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x0;y0) và đường thẳng \[\Delta :ax + by + c = 0\]. Khoảng cách từ điểm M đến \[\Delta \] được tính bằng công thức:
Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.
Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC
Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Trong mặt phẳng Oxy cho điểm A(−1;2);B(3;4) và đường thẳng \[{\rm{\Delta }}:\,\,x - 2y - 2 = 0\]. Tìm điểm \[M \in \Delta \] sao cho \[2A{M^2} + M{B^2}\] có giá trị nhỏ nhất.
Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.
Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.
Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:
Lập phương trình đường thẳng (Δ) đi qua M(2;7) và cách N(1;2) một khoảng bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.