Khoảng cách giữa \[{{\rm{\Delta }}_1}:3x + 4y = 12\] và \[{\Delta _2}:6x + 8y - 11 = 0\] là:
A.1,3
B.13
C.3,5
D.35
\[{{\rm{\Delta }}_1}:\;\;3x + 4y = 12 \Leftrightarrow 3x + 4y - 12 = 0.\]
Xét phương trình đường thẳng\[{{\rm{\Delta }}_1},\;{{\rm{\Delta }}_2}\] ta có:\[\frac{3}{6} = \frac{4}{8} \ne - \frac{{12}}{{11}} \Rightarrow {{\rm{\Delta }}_1}//{{\rm{\Delta }}_2}.\]
Chọn \[A\left( {0;3} \right) \in {{\rm{\Delta }}_1}.\] Khi đó ta có:
\[ \Rightarrow d\left( {{{\rm{\Delta }}_1};{{\rm{\Delta }}_2}} \right) = d\left( {A;{{\rm{\Delta }}_2}} \right) = \frac{{\left| {24 - 11} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{13}}{{10}} = 1,3.\]
Đáp án cần chọn là: A
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0),B(−2;4),C(−1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng \[\left( \Delta \right):3x - y - 5 = 0\;\]sao cho hai tam giác MAB,MCD có diện tích bằng nhau.
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x0;y0) và đường thẳng \[\Delta :ax + by + c = 0\]. Khoảng cách từ điểm M đến \[\Delta \] được tính bằng công thức:
Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.
Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC
Trong mặt phẳng Oxy cho điểm A(−1;2);B(3;4) và đường thẳng \[{\rm{\Delta }}:\,\,x - 2y - 2 = 0\]. Tìm điểm \[M \in \Delta \] sao cho \[2A{M^2} + M{B^2}\] có giá trị nhỏ nhất.
Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.
Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.
Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:
Lập phương trình đường thẳng (Δ) đi qua M(2;7) và cách N(1;2) một khoảng bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.