Giải bài toán bằng cách lập phương trình:
Một người dự định đi ô tô từ A đến B với vận tốc 60 km/h. Nhưng thực tế người đó phải đến sớm hơn 30 phút để giải quyết công việc nên đã tăng tốc thêm 20 km/h so với dự định. Tính độ dài quãng đường từ A đến B.Gọi x (km) là độ dài quãng đường từ A đến B (x > 0).
Vì ban đầu người đó dự định đi từ A đến B với vận tốc 60 km/h nên thời gian dự định đi hết quãng đường này là (h).
Trên thực tế người đó đã tăng tốc thêm 20 km/h nên vận tốc thực tế người đó đi từ A đến B là 60 + 20 = 80 (km/h).
Suy ra thời gian người đó đi hết quãng đường AB trên thực tế là (h).
Đổi 30 phút = giờ.
Vì trên thực tế người đó đến sớm hơn dự định ban đầu 30 phút nên ta có phương trình:
Û 4x – 120 = 3x
Û 4x – 3x = 120
Û x = 120 (thỏa mãn điều kiện)
Vậy độ dài quãng đường AB là 120 km.Cho tam giác ABC vuông tại A, kẻ tia phân giác cắt AC tại D.
a) Biết BC = 5cm, AB = 3 cm. Tính AC và AD.
b) Qua D kẻ DH vuông góc với BC tại H. Chứng minh ∆ABC ∆HDC từ đó chứng minh CH.CB = CD.CA.
c) E là hình chiếu của A trên BC. Chứng minh .
d) O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO và CA lần lượt tại M và N. Chứng minh M là trung điểm của BN.Cho hai biểu thức và với x ≠ 1; x ≠ ±2
a) Tính giá trị biểu thức A khi x = 3;
b) Rút gọn biểu thức B;
c) Tìm giá trị của x để A.B = 1.Cho phương trình với m là tham số.
Tìm các số nguyên m để phương trình có nghiệm duy nhất với số tự nhiên.