A. 1190.
B. 1070.
C. 630.
D. 1260.
Định lí: Tổng các góc của một tứ giác bằng 3600.
Khi đó ta có = 3600 ⇒ = 3600 - () = 3600 - ( 650 + 1170 + 710 )
⇒ = 3600 - 2530 = 1070.
Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC.
a) Chứng minh rằng BI ⊥ AK.
Cho hình thang vuông ABCD có = 900 và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm của EC. Chứng minh rằng = 900.
Cho hai điểm A, B cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng d. Tìm trên d điểm M sao cho tổng MA + MB nhỏ nhất.
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia DC). Gọi I là trung điểm của MN. Chứng minh rằng:
a) AM = AN