Cho hình thang vuông ABCD có = 900 và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm của EC. Chứng minh rằng = 900.
Vẽ BH ⊥ DC thì tứ giác ABHD có ba góc vuông là = 900 nên nó là hình chữ nhật.
Áp dụng tính chất về cạnh và giả thiết về hình chữ nhật ABHD ta được:
Lại có IE = IC ( 2 )
Từ ( 1 ), ( 2 ) suy ra HI là đường trung bình của tam giác DCE.
Áp dụng định lý về được trung bình trong tam giác DCE ta được HI//DE do DE ⊥ AC theo giả thiết nên HI ⊥ AC hay tam giác AIH vuông tại I.
+ Trong hình chữ nhật ABHD có
là đường trung tuyến của hai tam giác vuông AIH và BID.
Mặt khác ta lại có:
Điều đó chứng tỏ trong tam giác BID có IO là đường trung tuyến ứng với cạnh huyền và bằng nửa cạnh ấy nên nó là tam giác vuông tại I.
Vậy = 900
Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC.
a) Chứng minh rằng BI ⊥ AK.
Cho hai điểm A, B cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng d. Tìm trên d điểm M sao cho tổng MA + MB nhỏ nhất.
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia DC). Gọi I là trung điểm của MN. Chứng minh rằng:
a) AM = AN