Giải chi tiết
Đặt (điều kiện: )
Ta có hệ: (thỏa mãn).
Với t = 1 thì .
Vậy hệ phương trình có nghiệm là .
* Vì cả hai phương trình đều có nên ta sẽ sử dụng phương pháp đặt ẩn phụ để đưa về hệ phương trình bậc nhất hai ẩn. Hệ phương trình có trị tuyệt đối nên ta có thể chia hai trường hợp dể phá dấu trị tuyệt đối để được hệ phương trình bậc nhất hai ẩn (nhưng cách này sẽ dài hơn cách đặt ẩn phụ).
Cho hệ phương trình (m là tham số).
Tìm m để hệ phương trình có nghiệm duy nhất. Tìm m nguyên để có giá trị nguyên.
Cho hệ phương trình (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất. Khi đó, hệ thức liên hệ giữa x và y không phụ thuộc vào m.
b) Tìm a để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn là số nguyên.
Cho hệ phương trình (m là tham số).
Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn .
Cho hệ phương trình . Tìm điều kiện của m để phương trình có nghiệm duy nhất.
Cho hệ phương trình (m, n là tham số).
a) Không dùng máy tính cầm tay hãy giải hệ phương trình khi .
Cho hệ phương trình . Tìm điều kiện của m để phương trình có nghiệm duy nhất và tìm nghiệm duy nhất đó.