Cho tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O, đường kính AI. Gọi E là trung điểm của AB, K là trung điểm của OI, H là trung điểm của EB.
a) Chứng minh HK AB.
Tam giác ABI nội tiếp đường tròn đường kính AI nên tam giác ABI vuông tại B.
=> IB AB.
Lại có OE AB (quan hệ đường kính và dây cung). Do đó OE // IB. Suy ra OEBI là hình thang.
Mà HK là đường trung bình của hình thang OEBI => HK // OE // IB => HK EB.
Cho nửa đường tròn tâm I, đường kính MN. Kẻ tiếp tuyến Nx và lấy điểm P chính giữa của nửa đường tròn. Trên cung PN, lấy điểm Q (không trùng với P, N ). Các tia MP và MQ cắt tiếp tuyến Nx theo thứ tự tại S và T.
a) Chứng minh NS = MN.
Cho tam giác ABC vuông tại A. Kẻ đường cao AH và phân giác trong AD của góc HAC. Phân giác trong góc ABC cắt AH, AD lần lượt tại M, N. Chứng minh rằng BND = 90.