A. 2;
B. 1;
C. 0;
D. 4.
Đáp án đúng là: B
Ta có: tanα.cotα = 1 nên:
D = tan1°.tan2°…tan890.cot89°…cot2°.cot1°
= (tan1°.cot1°).(tan2°.cot2°)…(tan890.cot89°)
= 1.1…1
= 1.
Rút gọn biểu thức \(A = \frac{{{{(1 - {{\tan }^2}\alpha )}^2}}}{{4{{\tan }^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\) bằng:y
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng:
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Giá trị của biểu thức \(M = \frac{{{{\tan }^2}30^\circ + {{\sin }^2}60^\circ - {{\cos }^2}45^\circ }}{{{{\cot }^2}120^\circ + {{\cos }^2}150^\circ }}\) bằng:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :