A. \(2\sqrt {15} \);
B. \(4\sqrt {22} \);
C. \(4\sqrt {15} \);
D. \(2\sqrt {22} \).
Đáp án đúng là: A
Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \Leftrightarrow \widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right)\)
\( \Rightarrow \cos \left( {B + C} \right) = \cos \left( {180^\circ - A} \right) = - cosA = - \frac{1}{5}\)
\( \Rightarrow \cos A = \frac{1}{5}\)
Áp dụng định lý côsin trong tam giác, ta có:
\(BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.{\mathop{\rm cosA}\nolimits} } = \sqrt {{7^2} + {5^2} - 2.7.5.\frac{1}{5}} = 2\sqrt {15} \).
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.