Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:
A. 1;
B. 2;
C. 0;
D. 4.
Đáp án đúng là: B
Điều kiện của phương trình x2 + 5 ≥ 0 với \[\forall x \in \mathbb{R}\]
\[\sqrt {{x^2} + 5} = {x^2} - 1\] \[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 1 \ge 0\\{x^2} + 5 = {\left( {{x^2} - 1} \right)^2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\{x^4} - 3{x^2} - 4 = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\\left[ \begin{array}{l}{x^2} = - 1\left( {VL} \right)\\{x^2} = 4\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\\left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 2\end{array} \right.\](thỏa mãn điều kiện).
Vậy phương trình có 2 nghiệm.
Tổng các nghiệm của phương trình \[\left( {x - 2} \right)\sqrt {2x + 7} = {x^2} - 4\] bằng:
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:
Số nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\] là:
Số nghiệm của phương trình \[4\sqrt {{x^2} - 6x + 6} = {x^2} - 6x + 9\] là:
Số nghiệm của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) là:
Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\]là:
Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \] là
Gọi k là số nghiệm âm của phương trình :\(\sqrt { - {x^2} + 6x - 5} = 8 - 2x\). Khi đó k bằng:
Nghiệm của phương trình: \[\sqrt {x + 1} + \sqrt {4x + 13} = \sqrt {3x + 12} \] là:
Số nghiệm của phương trình \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là: