Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Oy?
A. \[\overrightarrow {{u_1}} = \left( {1; - 1} \right);\]
B. \[\overrightarrow {{u_2}} = \left( {0;1} \right);\]
C. \[\overrightarrow {{u_3}} = \left( {1;0} \right);\]
D. \[\overrightarrow {{u_4}} = \left( {1;1} \right).\]
Đáp án đúng là: B
Trục Oy: x = 0 có VTCP \[\vec j\left( {0;1} \right)\] nên một đường thẳng song song với Oy có VTCP là vectơ cùng phương với vectơ \[\vec j\left( {0;1} \right)\].
Do đó chỉ có ý B là thỏa mãn.
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2 ; -1) và B(2 ; 5) là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(-3; 2) và B(1; 4).
Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0) và B(0; b)?
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Đường thẳng d đi qua điểm M(1; -2) và có vectơ chỉ phương \[\overrightarrow u = \left( {3;5} \right)\] có phương trình tham số là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Viết phương trình tổng quát của đường thẳng d đi qua điểm M(-1; 2) và song song với trục Ox?
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?
Phương trình đường thẳng cắt hai trục tọa độ tại A(-2 ; 0) và B(0 ; 3) là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \[d:\left\{ \begin{array}{l}x = 2\\y = - 1 + 6t\end{array} \right.\]?
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:
Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là: