Cho parabol (P) có phương trình chính tắc là \({y^2} = 2px\), với p > 0. Khi đó khẳng định nào sau đây sai?
A. Tọa độ tiêu điểm \(F\left( {\frac{p}{2};0} \right)\);
B. Phương trình đường chuẩn \(\Delta :x + \frac{p}{2} = 0\);
C. Trục đối xứng của parabol là trục Oy.
D. Parabol nằm về bên phải trục Oy.
Đáp án đúng là: A
Khẳng định sai: Trục đối xứng của parabol là trục Oy.
Cần sửa lại: Trục đối xứng của parabol là trục Ox.
Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
Elip \(\left( E \right):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\) có độ dài trục bé bằng:
Elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có độ dài trục lớn bằng:
Elip \(\left( E \right):{x^2} + 5{y^2} = 25\) có độ dài trục lớn bằng:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục lớn bằng:
Cho elip \[\left( E \right):4{x^2} + 9{y^2} = 36\]. Tìm mệnh đề sai trong các mệnh đề sau:
Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
Elip \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\) có tiêu cự bằng:
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây sai?
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng?