Hướng dẫn giải:
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh S(1; 1) và cắt trục tung tại điểm (0; 2).
Do đó ta có:
a > 0 (1)
\( - \frac{b}{{2a}} = 1\) (2); \( - \frac{\Delta }{{4a}} = 1 \Leftrightarrow - \frac{{{b^2} - 4ac}}{{4a}} = 1\) (3)
c = 2 (4)
Thay (4) vào (3) ta có: \( - \frac{{{b^2} - 4a.2}}{{4a}} = 1 \Leftrightarrow - {b^2} + 8a = 4a \Leftrightarrow - {b^2} + 4a = 0\) (5)
Từ (2) ta có: b = –2a (6)
Thay (6) vào (5) ta có: –(–2a)2 + 4a = 0 ⇔ –4a2 + 4a = 0
⇔ 4a(–a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1 ta có: b = –2.1 = –2
Vậy hàm số y = ax2 + bx + c có a = 1, b = –2, c = 2.
Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng x = \(\frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b là
Cho parabol (P): y = ax2 + bx + c có trục đối xứng là đường thẳng x = 1.
Khi đó 4a + 2b bằng:
Xác định các hệ số a, b, c biết parabol có đồ thị hàm số y = ax2 + bx + c đi qua các điểm A(0; – 1), B(1; – 1), C(– 1; 1).
Cho đồ thị hàm số y = ax2 trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng:
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho parabol (P): y = ax2 + bx + 2. Xác định hệ số a, b biết (P) có đỉnh I(2; – 2).
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?