Tìm giá trị của góc α dưới đây để \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
Hướng dẫn giải:
Đáp án đúng là: C.
+) Với 0° < α < 90° thì tan α > 0 và cos α > 0 nên \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
+) Với 90° < α < 180° thì tan α < 0 và cos α < 0 nên \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
+) Với α = 0°, suy ra tan α = 0, cos α = 1, suy ra \(\frac{{\tan \alpha }}{{\cos \alpha }} = \frac{0}{1} = 0\).
+) Với α = 180°, suy ra tan α = 0, cos α = – 1, suy ra \(\frac{{\tan \alpha }}{{\cos \alpha }} = \frac{0}{{ - 1}} = 0\).
Vậy với α thỏa mãn 0° < α < 90° và 90° < α < 180° thì \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
Cho tam giác ABC. Xét dấu của biểu thức P = cos \(\frac{A}{2}\). sin B?
Với giá trị nào của góc γ dưới đây thì sin γ. cos γ có giá trị âm?
Cho tam giác ABC có góc C là góc tù, khẳng định nào dưới đây là đúng?
Các giá trị nào dưới đây của góc α để biểu thức P = sinα.cosα.tanα < 0 là: