Hướng dẫn giải:
Đáp án đúng là: C.
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = 2R\)\( \Rightarrow \frac{{\sin B}}{{\sin A}} = \frac{b}{a}\).
Lại có: \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\) (hệ quả định lí côsin).
Để \(\frac{{\sin B}}{{\sin A}} = 2.\cos C\) \( \Leftrightarrow \frac{b}{a} = 2.\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
\( \Leftrightarrow {b^2} = {a^2} + {b^2} - {c^2} \Leftrightarrow {a^2} - {c^2} = 0 \Leftrightarrow a = c\).
Do đó tam giác ABC cân.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Cho tam giác ABC có a = 4, b = 6, c = 8. Khẳng định nào sau đây là đúng?
Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?
Cho tam giác ABC có a = 10, c = 5\(\sqrt 3 \), \(\widehat B = 30^\circ \). Tìm mệnh đề đúng trong các mệnh đề sau?
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Cho tam giác ABC có a = 9; b = 12; c = 15. Xét dạng của tam giác ABC