Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học phát hiện ra rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ có cân nặng P(n) = 360 – 10n. Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất?
Hướng dẫn giải
Đáp án đúng là: D
Gọi T là trọng lượng tất cả số con cá trên một đơn vị diện tích của mặt hồ.
Vì trên một diện tích của mặt hồ có n con cá nên ta có:
T = (360 – 10n).n = –10n2 + 360n.
Hàm số T có dạng T = an2 + bn + c, với a = –10, b = 360, c = 0.
∆ = b2 – 4ac = 3602 – 4.(–10).0 = 129 600.
Vì a = –10 < 0 nên hàm số đạt giá trị lớn nhất bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(n = \frac{{ - b}}{{2a}}\).
Khi đó \({T_{\max }} = \frac{{ - 129\,\,600}}{{4.\left( { - 10} \right)}} = 3\,\,240\) khi \(n = \frac{{ - 360}}{{2.\left( { - 10} \right)}} = 18\).
Vậy phải thả 18 con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất.
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị đi qua điểm A(0; 6). Giá trị biểu thức P = abc bằng
Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.
Biết f(c) = c. Giá trị của b là: