Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Hướng dẫn giải
Đáp án đúng là: C
Theo hệ quả định lí sin, ta có:
⦁ BC = 2R.sinA = 2.2.sin120° = \(2\sqrt 3 \).
⦁ AC = 2R.sinB = 2.2.sin45° = \(2\sqrt 2 \).
Theo định lí côsin, ta có BC2 = AC2 + AB2 – 2.AC.AB.cosA
Suy ra \({\left( {2\sqrt 3 } \right)^2} = {\left( {2\sqrt 2 } \right)^2} + A{B^2} - 2.2\sqrt 2 .AB.\cos 120^\circ \)
Khi đó \(A{B^2} + 2\sqrt 2 .AB - 4 = 0\)
Vì vậy \(AB = \sqrt 6 - \sqrt 2 \) hoặc \(AB = - \sqrt 6 - \sqrt 2 \)
Vì AB là độ dài một cạnh của ∆ABC nên ta có AB > 0.
Do đó ta nhận \(AB = \sqrt 6 - \sqrt 2 \).
∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {120^\circ + 45^\circ } \right) = 15^\circ \).
Vậy ta chọn phương án C.
Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?