Hướng dẫn giải
Đáp án đúng là: C
Giả sử các tiết mục được biểu diễn đánh số thứ tự từ 1 đến 8. Vì số lượng tiết mục hát và múa bằng nhau nên có hai trường hợp:
Trường hợp 1: Tiết mục hát diễn ra đầu tiên
Khi đó, các tiết mục hát có số thứ tự là số lẻ, còn các tiết mục múa có số thứ tự là số chẵn. Như vậy, thứ tự của các tiết mục múa và hát được cố định, chỉ thay đổi thứ tự giữa các tiết mục múa, hoặc giữa các tiết mục hát.
Chọn 4 tiết mục hát từ 6 tiết mục hát và xếp thứ tự có:
\(A_6^4 = 360\) (cách)
Chọn 4 tiết mục múa từ 5 tiết mục múa và xếp thứ tự có:
\(A_5^4 = 120\) (cách)
Khi đó, số cách chọn và xếp thứ tự các tiết mục văn nghệ trong trường hợp tiết mục hát diễn ra đầu tiên là:
360.120 = 43 200
Trường hợp 2: Tiết mục múa diễn ra đầu tiên
Tương tự, số cách chọn và xếp thứ tự các tiết mục văn nghệ trong trường hợp tiết mục múa diễn ra đầu tiên là:
120.360 = 43 200
Vậy số cách chọn và xếp thứ tự các tiết mục văn nghệ sao cho các tiết mục hát và múa xen kẽ nhau là:
43 200 + 43 200 = 86 400.
Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nằng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.
Xếp 6 người A, B, C, D, E, F thành một hàng dọc. Hỏi có bao nhiêu cách sắp xếp nếu A đứng đầu hàng
Xếp ngẫu nhiên 3 bạn nam và 4 bạn nữ ngồi vào bảy ghế kê theo hàng ngang. Hỏi có bao nhiêu cách xếp sao cho 3 bạn nam ngồi cạnh nhau?
Có bao nhiêu giá trị của x thoả mãn \({P_x}A_x^2 + 72 = 6(A_x^2 + 2{P_x})\).
Giá trị của x thoả mãn phương trình \[A_x^{10} + A_x^9 = 9A_x^8\] là:
Có bao nhiêu số tự nhiên n thỏa mãn \(A_n^3 + 5A_n^2 = 2\left( {n + 15} \right)\)?
Có bao nhiêu giá trị nguyên dương của n thoả mãn:\({P_{n - 1}}.A_{n + 4}^4 < 15{P_{n + 2}}\).
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách xếp các cổ động viên thành một hàng dọc sao cho các cổ động viên cùng màu áo đứng cạnh nhau?