Elip \[\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\] có độ dài trục lớn bằng:
Hướng dẫn giải
Đáp án đúng là: B
Tổng quát: Phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right),\) có độ dài trục lớn \({A_1}{A_2} = \)2a.
Xét \[\left( E \right):\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\] \[ \Rightarrow \left\{ \begin{array}{l}{a^2} = 36\\{b^2} = 9\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 3\end{array} \right.\,\,\]
\[ \Rightarrow \,\,{A_1}{A_2}\]= 2.6 = 12.
Cho parabol (P) có phương trình chính tắc là \({y^2} = 2px\), với p > 0. Khi đó khẳng định nào sau đây sai?
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Elip \[\left( E \right):{x^2} + 4{y^2} = 16\] có độ dài trục lớn bằng:
Cho Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\), với a, b > 0. Khi đó khẳng định nào sau đây đúng về tỉ số \(\frac{c}{a}\)?