Elip \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\] có tiêu cự bằng:
Hướng dẫn giải
Đáp án đúng là: D
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có tiêu cự là 2c
Xét \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 4\end{array} \right.\]
\[ \Rightarrow {c^2} = {a^2} - {b^2}\]= 16 – 4 = 12\[ \Rightarrow \]c = \[\sqrt {12} \]\[ \Rightarrow \]2c = 2\[\sqrt {12} \].
Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\] và \[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B (–3 ; 5) và trọng tâm G (–1 ;1). Tìm tọa độ đỉnh C?
Trong hệ tọa độ Oxy cho ba điểm A(3; 5), B(1; 2), C(5; 2) và D(m ; n) . Tính m + n để ACDB là hình bình hành.
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O (0 ; 0) là trọng tâm tam giác ABC?