Cho hệ . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì
A.
Hướng dẫn giải
Đáp án đúng là: A
Trước hết, ta vẽ hai đường thẳng:
(d1): 2x + 3y = 4 đường thẳng d1 đi qua hai điểm và (2; 0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 + 3.0 = 0 < 4, thoả mãn bất phương trình 2x + 3y < 4. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không bị gạch chéo (không kể biên) của (d1)
Vẽ đường thẳng (d2): đường thẳng d2 đi qua hai điểm và (4;0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có , thoả mãn bất phương trình . Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không bị gạch chéo(không kể biên) của (d2).
Miền nghiệm được biểu diễn trong hình dưới đây
Từ đồ thị biểu diễn miền nghiệm của hệ bất phương trình ta có ; S1 = S; S2 S. Vậy .
Anh Trung có kế hoạch đầu tư 400 triệu đồng vào hai khoản X và Y. Để đạt được lợi nhuận thì khoản X phải đầu tư ít nhất 100 triệu đồng và số tiền đầu tư cho khoản Y không nhỏ hơn số tiền cho khoản X. Viết hệ bất phương trình bậc nhất hai ẩn để mô tả hai khoản đầu tư đó.
Phần không bị gạch trong hình vẽ nào trong các hình sau biểu diễn miền nghiệm của hệ bất phương trình
Cho hệ . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì:
Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ phương trình sau:
Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ phương trình sau
Phần không bị gạch trong hình vẽ nào trong các hình sau biểu diễn miền nghiệm của hệ bất phương trình
Phần không bị gạch trong hình vẽ nào trong các hình sau biểu diễn miền nghiệm của hệ bất phương trình