Cho f(x) = mx2 – 2mx + m – 1. Giá trị nào của m để f(x) ≥ 0 vô nghiệm?
A. m ≤ 0;
B. m ≥ 0;
C. m < 0;
Hướng dẫn giải
Đáp án đúng là: C
Nếu m = 0 ta có f(x) = –1 < 0 khi đó f(x) ≥ 0 vô nghiệm.
Do đó m = 0 thỏa mãn yêu cầu đề bài.
Nếu m ≠ 0 thì f(x) = mx2 – 2mx + m – 1 là tam thức bậc hai.
Ta có:
∆’ = (–m)2 – m.(m – 1)
= m2 – m2 + m
= m.
Ta có f(x) ≥ 0 vô nghiệm. Nghĩa là, f(x) < 0, với mọi giá trị của x.
⇔ a < 0 và ∆’ < 0
⇔ m < 0 và m < 0
⇔ m < 0.
Vậy m ≤ 0 thỏa mãn yêu cầu bài toán.
Ta chọn phương án A.
Cho ∆MNP vuông tại M có MN dài hơn MP 10 cm. Biết chu vi của ∆MNP là 50 cm. Độ dài của cạnh NP bằng khoảng:
Một mảnh đất hình chữ nhật có chu vi là 150 m. Để diện tích của mảnh đất đó lớn hơn 650 m2 thì chiều dài của mảnh đất phải:
Cho f(x) = (m – 3)x2 + (m + 3)x – (m + 1). Để f(x) là một tam thức bậc hai và có nghiệm kép thì:
Khoảng cách từ nhà An ở vị trí A đến nhà Bình là 200 m. Từ nhà, nếu An đi x mét theo phương tạo với AB một góc 120° thì sẽ đến nhà bác Mai ở vị trí M và nếu đi thêm 300 m nữa thì sẽ đến siêu thị ở vị trí S.
Biết rằng quãng đường từ nhà Bình đến siêu thị gấp đôi quãng đường từ nhà Bình đến nhà bác Mai. Khi đó quãng đường từ nhà An đến nhà bác Mai là:
Lợi nhuận I thu được từ việc giảm giá một loại xe gắn máy của một doanh nghiệp tư nhân là một tam thức bậc hai I(x) = 200x2 – 1400x + 2400, trong đó x là số tiền giảm giá (triệu đồng) và 0 ≤ x ≤ 5. Với số tiền giảm giá là bao nhiêu thì doanh nghiệp đó không có lãi?
Cho f(x) = x2 + 2(m – 1)x + m2 – 3m + 4. Giá trị của m để f(x) không âm với mọi giá trị của x là: