Tiếp tuyến của đồ thị vuông góc với đường thẳng có phương trình là
D.
Đáp án C
Ta có:
Gọi d là tiếp tuyến của (C) vuông góc với và có tiếp điểm là
Do nên d có hệ số góc
Khi đó
Phương trình tiếp tuyến tại là:
Cho hàm số có đồ thị (C). Có bao nhiêu điểm thuộc đồ thị (C) mà tiếp tuyến của (C) tại điểm đó tạo với hai trục tọa độ một tam giác có diện tích bằng ?
Khoảng cách lớn nhất từ điểm đến tiếp tuyến của đồ thị hàm số bằng
Cho hàm số có đồ thị (C). Hỏi trên trục Oy có bao nhiêu điểm A mà qua A có thể kẻ đến (C) đúng ba tiếp tuyến?
Tập hợp các giá trị thực của tham số m để trên đồ thị hàm số tồn tại đúng hai điểm có hoành độ dương mà tiếp tuyến tại các điểm đó vuông góc với đường thẳng là
Tập hợp các giá trị thực của tham số m để mọi tiếp tuyến của đồ thị hàm số đều có hệ số góc không âm là
Hệ số góc của các tiếp tuyến tại điểm có hoành độ x=1 của đồ thị hàm số y=f(x) ; y=g(x) và bằng nhau. Mệnh đề nào sau đây đúng?
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M có tung độ bằng 5 là
Gọi là một điểm thuộc , biết tiếp tuyến của (C) tại M cắt (C) tại điểm (khác M). Tìm giá trị nhỏ nhất .
Cho hàm số tiếp tuyến của đồ thị hàm số vuông góc với đường thẳng là
Tọa độ điểm thuộc đồ thị của hàm số sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác vuông có diện tích bằng 2 là
Cho điểm M thuộc đồ thị và có hoành độ bằng – 1. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M.
Cho hàm số có đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm lần lượt cắt hai trục tọa độ tại A và B. Tính diện tích tam giác OAB.