Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 4sin3 x + 9cos2 x + 6sin x -10. Giá trị của tích M.m bằng
C. 0.
D.
Đáp án đúng là: B
y = 4sin3 x + 9cos2 x + 6sin x - 10
= 4sin3 x + (9cos2 x - 9) + 6sin x - 1
= 4sin3 x - 9sin2 x + 6sin x - 1
Đặt f (t) = 4t3 - 9t2 + 6t - 1 với t = sin x Î [-1; 1]
(12t2 -12t) - (6t - 6) = 0
12t.(t - 1) - 6(t - 1) = 0
6(2t -1).(t - 1) = 0
Xét bảng biến thiên của hàm số f (t) = 4t3 - 9t2 + 6t - 1 trên đoạn [-1; 1]
Dựa vào bảng biến thiên, suy ra
Do đó
Trong mặt phẳng tọa độ Oxy, gọi (C) là đồ thị của hàm số . Phương trình tiếp tuyến của (C) tại giao điểm của đồ thị (C) với trục hoành là
Trong mặt phẳng tọa độ Oxy, gọi A, B, C, D là 4 điểm cực trị của đồ thị hàm số với hoành độ đều khác 0. Bán kính đường tròn ngoại tiếp đi qua 4 điểm A, B, C, D bằng
Tất cả các giá trị của tham số m để hàm số đồng biến trên khoảng (-; -2) là
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, AD và điểm O tùy ý trên mặt phẳng (BCD). Thể tích tứ diện OMNP bằng
Trong không gian tọa độ Oxyz, gọi (P) là mặt phẳng đi qua 2 điểm A(0; 1; -2), B(2; 1; 0) sao cho khoảng cách từ gốc tọa độ O đến (P) lớn nhất. Phương trình của mặt phẳng (P) là
Cho hàm số f (x) liên tục và có đạo hàm trên [0; 1]. Biết và f (0) = f (1) = 7. Giá trị của tích phân bằng
Gọi F (x) là một nguyên hàm của hàm số f (x) = ex thỏa mãn F (0) = 2. Giá trị của F (1) bằng