Biết rằng = aln2 + bln3 + cln5, với a, b, c ∈ ℚ. Giá trị a + b + c bằng
A.
B.
C.
D.
Đáp án đúng là: B
Ta có:
=
=
Đặt u =
Û u2 = 3x + 1
Û 2udu = 3dx
Û dx = u.du
Đổi cận
x |
0 |
1 |
u |
1 |
2 |
Do đó:
=
=
= .(3ln5 – 2ln4 – 3ln4 + 2ln3)
= .(3ln5 – 5ln4 + 2ln3)
= .(3ln5 −10ln2 + 2ln3)
= ln2 + ln3 + 2ln5
Mà = aln2 + bln3 + cln5
Þ a = −; b = ; c = 2
Þ a + b + c = − + + 2 =
Vậy a + b + c =
Cho hàm số f(x) thỏa mãn f(x) + f '(x) = e−x, ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f(x)e2x là
Cho hàm số y = f(x) liên tục và không âm trên đoạn [a; b]. Gọi hình phẳng (H) giới hạn bởi các đường y = f(x), y = 0, x = a và x = b. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh Ox bằng
Cho hàm số f(x) liên tục trên đoạn [1; 3]. Biết F(x) là nguyên hàm của f(x) trên đoạn [1; 3] thỏa mãn F(1) = −2 và F(3) = 5. Khi đó bằng
Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và với mọi a, b, k ∈ ℝ. Khẳng định nào sau đây sai?
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] và f(1) = . Tích phân bằng