Trong không gian Oxyz, cho điểm A(1; 2; −1), đường thẳng d: và mặt phẳng (P): x + y + 2z + 1 = 0. Điểm B thuộc (P) thỏa mãn đường thẳng AB vuông góc và cắt d. Tọa độ của B là
A. (−3; 0; 1);
B. (−3; 8; −3);
C. (0; 3; −2);
Đáp án đúng là: C
Đường thẳng d: có một vectơ chỉ phương là = (2; 1; −1)
Gọi M = AB ∩ d
Þ M(1 + 2t; −1 + t; 2 – t)
Với A(1; 2; −1) ta có:
= (2t; t – 3; 3 – t)
Lại có AB ^ d Û . = 0
Û 2.2t + 1.(t – 3) – 1.(3 – t) = 0
Û 4t + t – 3 – 3 + t = 0
Û t = 1
Þ
Þ = (1; −1; 1)
Đường thẳng AB đi qua điểm A(1; 2; −1) có vectơ chỉ phương = (1; −1; 1) có phương trình là:
(t ∈ ℝ)
B nằm trên AB nên ta có B(1 + t'; 2 – t'; –1 + t')
Do B = AB ∩ (P) nên tọa độ của B thỏa mãn phương trình của (P): x + y + 2z + 1 = 0.
Þ 1 + t' + 2 – t' + 2.(–1 + t') + 1 = 0
Þ 2t' + 2 = 0
Þ t' = –1
Khi đó B(0; 3; −2)
Vậy tọa độ của B là (0; 3; −2).
Cho hàm số f(x) thỏa mãn f(x) + f '(x) = e−x, ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f(x)e2x là
Cho hàm số y = f(x) liên tục và không âm trên đoạn [a; b]. Gọi hình phẳng (H) giới hạn bởi các đường y = f(x), y = 0, x = a và x = b. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh Ox bằng
Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?
Cho hàm số f(x) liên tục trên đoạn [1; 3]. Biết F(x) là nguyên hàm của f(x) trên đoạn [1; 3] thỏa mãn F(1) = −2 và F(3) = 5. Khi đó bằng
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và với mọi a, b, k ∈ ℝ. Khẳng định nào sau đây sai?
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] và f(1) = . Tích phân bằng