Trong không gian Oxyz cho mặt phẳng (P): x + y + 2z - 1 = 0. Phương trình của mặt phẳng chứa trục Ox và vuông góc với (P) là
A. x - 2z = 0;
B. 2y - z = 0;
C. 2y + z = 0;
Đáp án đúng là: B
Trục Ox có một véc-tơ chỉ phương là
Ta có một véc-tơ chỉ phương là
Phương trình của mặt phẳng chứa trục Ox và vuông góc với (P) nên véc-tơ pháp tuyến của mặt phẳng vuông góc với một véc-tơ chỉ phương của Ox và một véc-tơ chỉ phương
= (0; -2; 1)
Phương trình của mặt phẳng đi qua O và có véc-tơ pháp tuyến (0; -2; 1) là
- 2y + z = 0
Û 2y - z = 0.
Trong không gian Oxyz, mặt phẳng (P): 2x + y - 3z + 4 = 0 có một vectơ pháp tuyến là
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm M(1; 2; 3) và vuông góc với trục Oz là
Trên tập hợp các số phức, xét phương trình z2 - 2mz + 7m - 6 = 0, với m là tham số thực. Có bao nhiêu giá trị nguyên của m để phương trình đó cho có hai nghiệm phân biệt z1; z2 thỏa mãn |z1| = |z2|?
Trong không gian Oxyz cho hai đường thẳng · Phương trình của đường thẳng song song với d1, cắt d2 và cắt trục Oz là
Trong không gian Oxyz, cho hai điểm A(1; 0; -2) và B(5; -4; 4). Trung điểm của đoạn AB có tọa độ là
Cho hai số phức z1 = 3 - 2i và z2 = -4 + 6i. Số phức z1 - z2 bằng
Trong không gian Oxyz cho hai điểm A(1; -2; 2) và B(-1; 2; -2). Phương trình của mặt cầu có đường kính AB là