Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Tìm phương trình của đường thẳng ∆ đi qua A và song song với (P) sao cho khoảng cách từ B đến đường thẳng ∆ là nhỏ nhất.
A.
B.
C.
D.
Đáp án đúng là: D
+)
+)
Viết phương trình mặt phẳng (Q) qua A và song song với mặt phẳng (P) là:
(Q): x - 2y + 2z + m = 0
Mặt phẳng (Q) qua A Þ -3 + 2 + m = 0 Û m = 1
Vậy (Q): x - 2y + 2z + 1 = 0
Lấy H là hình chiếu của B lên (Q)
Đường thẳng BH qua B và có véc-tơ chỉ phương là
H là giao của BH và (Q) nên ta có
(1 + t) - 2(-1 - 2t) + 2(3 + 2t) + 1 = 0
Û 9t + 10 = 0
Vậy
Vậy phương trình cần tìm là phương trình AH đi qua A(-3; 0; 1) và có véc-tơ chỉ phương là (26; 11; -2)
Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 0; 2) và B(4; 1; 1) Vectơ có tọa độ là:
Trong không gian Oxyz. Điểm nào sau đây thuộc mặt phẳng (P): -2x + y - 5 = 0?
Cho hàm số y = f (x) liên tục trên đoạn [a; b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f (x), trục hoành và hai đường thẳng x = a, x = b (a < b). Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:
Trong không gian Oxyz, cho điểm M(3; 1; -2) và mặt phẳng (a): 3x - y + 2z + 4 = 0. Mặt phẳng (P) đi qua M và song song với (a) có phương trình là
Hàm số F (x) là một nguyên hàm của hàm số f (x) trên khoảng K nếu
Phương trình nào sau đây là phương trình bậc hai với hệ số thực?