Cho số phức z thỏa mãn là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là:
A. Đường tròn tâm O, bán kính R = 1.
B. Hình tròn tâm O, bán kính R = 1 (kể cả biên).
C. Hình tròn tâm O, bán kính R = 1 (không kể biên).
D. Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0;1).
Chọn D.
Gọi M(a ; b) là điểm biểu diễn số phức z = a + bi
Ta có:
Để là số thuần ảo thì
Tập hợp các điểm M là đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0; 1).
Cho số phức z thỏa mãn điều kiện |z – 3 + 4i| ≤ 2. Trong mặt phẳng Oxy tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích
Cho hai số phức z1 và z2 thỏa mãn | z1 + 2 z2| = 5 và |3 z1 - z2| = 3. Giá trị lớn nhất của P = | z1| + | z2| gần với số nguyên nào nhất?
Cho số phức với m nguyên. Có bao nhiêu giá trị của m với 1≤ m≤ 50 để z là số thuần ảo?
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 2| + |z – 2| = 5 trên mặt phẳng tọa độ là một
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Cho số phức z1; z2 thỏa mãn . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức | z1 - z2 | là?
Trong các số phức z thỏa mãn điều kiện |z – 1 – 2i| = 2, tìm số phức z có môđun nhỏ nhất.
Cho biểu thức L = 1- z+ z2- z3+ ...+ z2016- z2017 với . Biểu thức L có giá trị là
Cho số phức z thỏa mãn là một số thực. Hỏi giá trị nhỏ nhất của |z| gần với giá trị nào nhất?
Tìm mô-đun của số phức w = b + ci biết số phức là nghiệm của phương trình z2 + 8bz + 64c = 0
Trong các số phức z thỏa mãn |z + 4 - 3i| + |z -8 - 5i| = 2. Tìm giá trị nhỏ nhất của |z – 2 – 4i| ?
Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?