Cho số phức z thỏa điều kiện .
Giá trị nhỏ nhất của biểu thức được viết dưới dạng với a, b là các hữu tỉ.
Giá trị của a + b là
A. 4
B. 2
C. 7
D. 3
Đáp án D
Cách 1
· Đặt biểu diễn cho số phức z.
· Từ giả thiết, ta có M thuộc đường trung trực của đoạn EF và P=AM+BM+CM
· Ta chứng minh điểm M chính là hình chiếu vuông góc của B lên đường thẳng .
- Với M’ tùy ý thuộc, M’ khác M. Gọi A’ là điểm đối xứng của A qua . Nhận thấy rằng ba điểm A’, M, C thẳng hàng.
- Ta có
Mà
Lại có Do đó
Cách 2
· Gọi Từ giả thiết , dẫn đến y=x .
Khi đó z=x+xi.
·
· Sử dụng bất đẳng thức
Dấu đẳng thức xảy ra khi và chỉ khi . Ta có
Dấu đẳng thức xảy ra khi và chỉ khi
· Mặt khác
Dấu đẳng thức xảy ra khi và chỉ khi x=
· Từ hai trường hợp trên, ta thấy, giá trị nhỏ nhất của P là .
Khi đó a+b=3.
Cho các số phức z, w thỏa mãn
Tìm giá trị lớn nhất của biểu thức
Cho w là số phức thay đổi thỏa mãn .
Trong mặt phẳng phức, các điểm biểu diễn số phức z=3w+1-2i chạy trên đường nào?
Cho các số phức w,z thỏa mãn và 5w=(2+i)(z-4).
Giá trị lớn nhất của biểu thức bằng
Cho số phức z thỏa mãn . Biết tập hợp các điểm biểu diễn số phức w xác định bởi là một đường tròn bán kính R. Tính R
Có bao nhiêu số phức z thỏa mãn đồng thời hai điều kiện sau: và ?
Tập hợp tất cả các điểm biễu diễn các số phức z thõa mãn là đường tròn có tâm I và bán kính R lần lượt là
Cho số phức z=1+i. Biết rằng tồn tại các số phức
(trong đó ) thỏa mãn .
Tính b-a.
Cho số phức z, biết rằng các điểm biễu diễn hình học của các số phức z, iz và z+iz tạo thành một tam giác có diện tích bằng 18. Modun của số phức bằng