Trong tập các số phức, gọi là hai nghiệm của phương trình với có thành phần ảo dương. Cho số phức z thỏa mãn . Giá trị nhỏ nhất của là
A.
B.
C.
D.
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là
Đạt được khi và chỉ khi
Cho số phức z thỏa mãn z(2-i)+13i=1. Tính mô đun của số phức z.
Cho hai số phức và .
Tính tổng phần thực và phần ảo của số phức .
Gọi S là tập hợp các số thực m sao cho với mỗi có đúng một số phức thỏa mãn và là số thuần ảo. Tính tổng của các phần tử của tập S.
Cho số phức z và w thỏa mãn z+w=3+4i và .
Tìm giá trị lớn nhất của biểu thức .
Cho i là đơn vị ảo. Gọi S là tập hợp các số nguyên dương n có 2 chữ số thỏa mãn là số nguyên dương. Số phần tử của S là
Trong tập các số phức, cho phương trình (1). Gọi là một giá trị của m để phương trình (1) có hai nghiệm phân biệt thỏa mãn Hỏi trong khoảng (0;20) có bao nhiêu giá trị m ?
Cho số phức z thỏa mãn là số thực và với
Gọi là một giá trị của m để có đúng một số phức thỏa mãn bài toán.
Khi đó
Cho số phức z thỏa mãn điều kiện .
Tìm giá trị lớn nhất của biểu thức