Phương trình có tổng các nghiệm bằng:
A. 7
B. 3
C. 5
D. 6
Xét hàm số trên R. Ta có:
Nên phương trình f(x)=0 có tối đa 1 nghiệm trong các khoảng và
Mà f(1)=f(2)=0 nên phương trình (*) có 2 nghiệm x = 1 và x = 2
Tổng các nghiệm của phương trình đã cho là 7.
Đáp án cần chọn là: A.
Cho phương trình với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Cho các số thực không âm x, y, z thỏa mãn . Giá trị nhỏ nhất của biểu thức là:
Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất
Cho x, y là các số thực dương thỏa mãn . Giá trị lớn nhất của biểu thức bằng:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để phương trình có nghiệm duy nhất?
Cho . Khi đó biểu thức với tối giản và . Tích a.b có giá trị bằng:
Cho các số thực a, b, c thuộc khoảng và thỏa mãn . Giá trị của biểu thức bằng:
Cho phương trình . Tập tất cả các giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn là khoảng . Khi đó, a thuộc khoảng
Có bao nhiêu số nguyên m thuộc sao cho phương trình có bốn nghiệm phân biệt?
Cho hàm số y=f(x) có bảng biến thiên như sau:
Biết , giá trị lớn nhất của m để phương trình có nghiệm trên đoạn [0;2] là:
Tìm giá trị của a để phương trình có 2 nghiệm phân biệt thỏa mãn: , ta có a thuộc khoảng: