Cho các số thực a, b, c thuộc khoảng và thỏa mãn . Giá trị của biểu thức bằng:
A. 1
B.
C. 2
D. 3
Ta có:
Đặt ta có: (do a, b, c >1)
Khi đó phương trình (*) trở thành:
TH1: y=-4x loại do x, y > 0
TH2: . Khi đó ta có:
Đáp án cần chọn là: A.
Cho phương trình với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Cho các số thực không âm x, y, z thỏa mãn . Giá trị nhỏ nhất của biểu thức là:
Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất
Cho x, y là các số thực dương thỏa mãn . Giá trị lớn nhất của biểu thức bằng:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để phương trình có nghiệm duy nhất?
Cho phương trình . Tập tất cả các giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn là khoảng . Khi đó, a thuộc khoảng
Cho . Khi đó biểu thức với tối giản và . Tích a.b có giá trị bằng:
Có bao nhiêu số nguyên m thuộc sao cho phương trình có bốn nghiệm phân biệt?
Tìm giá trị của a để phương trình có 2 nghiệm phân biệt thỏa mãn: , ta có a thuộc khoảng:
Các giá trị thực của tham số m để phương trình: có nghiệm thuộc khoảng (-1; 0) là