Cho phương trình . Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm thỏa mãn là khoảng A. Khi đó a thuộc khoảng nào dưới đây?
A. (3,7;3,8)
B. (3,6;3,7)
C. (3,8;3,9)
D. (3,5;3,6)
ĐKXĐ: x > - 1
Ta có:
Dễ dàng kiểm tra x = 0 không phải nghiệm của phương trình trên.
Với , phương trình (1)
Xét hàm số ta có:
Nhận xét: Trên , hàm số y=ln(x+1) đồng biến, hàm số nghịch biến.
(2) có tối đa 1 nghiệm trên
Mà => pt (2) có nghiệm duy nhất
Ta có BBT của f (x) trên 2 khoảng (0; 2) và như sau:
Như vậy, để phương trình đã cho có hai nghiệm thỏa mãn thì
Đáp án cần chọn là: A.
Cho phương trình với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Cho các số thực không âm x, y, z thỏa mãn . Giá trị nhỏ nhất của biểu thức là:
Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất
Cho x, y là các số thực dương thỏa mãn . Giá trị lớn nhất của biểu thức bằng:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để phương trình có nghiệm duy nhất?
Cho các số thực a, b, c thuộc khoảng và thỏa mãn . Giá trị của biểu thức bằng:
Cho phương trình . Tập tất cả các giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn là khoảng . Khi đó, a thuộc khoảng
Cho . Khi đó biểu thức với tối giản và . Tích a.b có giá trị bằng:
Có bao nhiêu số nguyên m thuộc sao cho phương trình có bốn nghiệm phân biệt?
Tìm giá trị của a để phương trình có 2 nghiệm phân biệt thỏa mãn: , ta có a thuộc khoảng: