Cho các số thực dương a, b, c khác 1 thỏa mãn . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức . Tính giá trị của biểu thức
A. S=28
B. S=25
C. S=26
D. S=27
Ta có:
Đặt , khi đó ta có;
Thay x, y vào (1) ta có:
Để tồn tại các số a, b, c thỏa mãn yêu cầu bài toán thì phương trình (2) phải có nghiệm
Vậy:
Đáp án cần chọn là: D.
Cho phương trình với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Cho các số thực không âm x, y, z thỏa mãn . Giá trị nhỏ nhất của biểu thức là:
Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất
Cho x, y là các số thực dương thỏa mãn . Giá trị lớn nhất của biểu thức bằng:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để phương trình có nghiệm duy nhất?
Cho . Khi đó biểu thức với tối giản và . Tích a.b có giá trị bằng:
Cho các số thực a, b, c thuộc khoảng và thỏa mãn . Giá trị của biểu thức bằng:
Cho phương trình . Tập tất cả các giá trị của tham số m để phương trình (1) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn là khoảng . Khi đó, a thuộc khoảng
Có bao nhiêu số nguyên m thuộc sao cho phương trình có bốn nghiệm phân biệt?
Cho hàm số y=f(x) có bảng biến thiên như sau:
Biết , giá trị lớn nhất của m để phương trình có nghiệm trên đoạn [0;2] là: