Xếp 3 nam, 2 nữ vào 8 ghế. Có bao nhiêu cách Xếp 3 nam ngồi kề, 2 nữ ngồi kề và giữa hai nhóm có ít nhất một ghế trống.
A. 160
B.150.
C. 144.
D. 280
Ta coi ba ghế nam ngồi là một nhóm; 2 ghế nữ ngồi là một nhóm; mội ghế trống là một nhóm. Ta có 5 nhóm.
Chọn 2 nhóm ghế để xếp nam và nữ có cách.
Trong số đó có 8 cách xếp nhóm nam và nhóm nữ ngồi kề nhau.
Do đó ta có 20-8=12 cách chọn vị trí để xếp nam và nữ thỏa bài toán.
Ứng với mỗi cách xếp trên , ta có 3! cách xếp chỗ cho nam vào ba ghế dành cho nam và có 2! cách xếp 2 nữ ngồi vào 2 vị trí dành cho nữ.
Vậy ta có tất cả 12.3!.2!=144 cách xếp thỏa yêu cầu bài toán.
Chọn C.
Từ các số của tập A={0; 1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau trong đó có hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau.
Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó có đúng 3 chữ số lẻ và 3 chữ số chẵn ?
Một nhóm học sinh gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một đội cờ đỏ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập đội cờ đỏ.
Cho đa giác đều A1A2…A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm A1;A2;…;A2n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm A1;A2;…;A2n . Tìm n?
Cho hai đường thẳng song song a; b. Trên đường thẳng a lấy 10 điểm phân biệt, trên b lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 vừa nói trên.
Từ các chữ số 0, 1, 2, 3, 4, 5, 8 lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 3 và 5?
Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số: Có 9 chữ số trong đó chữ số 0 có mặt 2 lần,chữ số hai có mặt ba lần và chữ số 3 có mặt 2 lần các chữ số còn lại có mặt đúng một lần.
Hai nhóm người cần mua nền nhà, nhóm thứ nhất có 2 người và họ muốn mua 2 nền kề nhau, nhóm thứ hai có 3 người và họ muốn mua 3 nền kề nhau. Họ tìm được một lô đất chia thành 7 nền đang rao bán (các nền như nhau và chưa có người mua). Tính số cách chọn nền của mỗi người thỏa yêu cầu trên
Có bao nhiêu số nguyên dương không vượt quá 1000 mà chia hết cho 3 hoặc chia hết cho 5?
Từ các chữ số 0, 1, 2, 3, 4, 5, 8 lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Có 7 nhà toán học nam, 4 nhà toán học nữ và 5 nhà vật lý nam.Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả toán học và vật lý.
Từ các chữ số 0; 1; 2; 3; 4 có thể lập được bao nhiêu số:Có 8 chữ số trong đó chữ số 1có mặt 3 lần, chữ số 4 xuất hiện 2 lần; các chữ số còn lại có mặt đúng một lần.
Có 15 học sinh lớp A, trong đó có Khánh và 10 học sinh lớp B, trong đó có Oanh. Hỏi có bao nhiêu cách lập một đội tình nguyện gồm 7 học sinh trong đó có 4 học sinh lớp A, 3 học sinh lớp B và trong đó chỉ có một trong hai em Khánh và Oanh.
Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên,mỗi số có 6 chữ số đồng thời thỏa điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 số sau một đơn vị.
Một lớp có 33 học sinh, trong đó có 7 nữ. Cần chia lớp thành 3 tổ, tổ 1 có 10 học sinh, tổ 2 có 11 học sinh, tổ 3 có 12 học sinh sao cho trong mỗi tổ có ít nhất 2 học sinh nữ. Hỏi có bao nhiêu cách chia như vậy?