Trong kì thi thử THPT Quốc Gia, An làm để thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm. An trả lời hết các câu hỏi và chắc chắn đúng 45 câu, 5 câu còn lại An chọn ngẫu nhiên. Tính xác suất để điểm thi môn Toán của An không dưới 9,5 điểm.
A.
B.
C.
D.
Đáp án A.
Phương pháp: Tính xác suất để học sinh đúng thêm 3 câu nữa trở lên.
Xác suất mỗi câu trả lời đúng là 0,25 và mỗi câu trả lời sai là 0,75.
Cách giải:
An trả lời chắc chắn đúng 45 câu nên có chắc chắn 9 điểm.
Để điểm thi 9,5 => An phải trả lời đúng từ 3 câu trở lên nữa.
Xác suất để trả lời đúng 1 câu hỏi là 0,25 và trả lời sai là 0,75
TH1: Đúng 3 câu. P1 = 0,253.0,752
TH2: Đúng 49 câu P2 = 0,254.0,75
TH3: Đúng cả 50 câu P3 = 0,254
Vậy xác suất để An được trên 9,5 điểm là P = P1 + P2 + P3 = 13/1024.
Cho đa giác đều có 20 đỉnh. Số tam giác được tạo nên từ các đỉnh này là
Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.
Trong một lớp học gồm 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được gọi đó cả nam lẫn nữ là
Một lô hàng có 20 sản phẩm, trong đó có 4 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tính xác suất để trong 6 sản phẩm lấy ra có không quá 1 phế phẩm
Cho đa giác đều 100 đỉnh. Chọn ngẫu nhiên 3 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác tù là
Trên giá sách có 4 quyển sách toán, 5 quyển sách lý, 6 quyển sách hóa. Lấy ngẫu nhiên 3quyển sách. Tính xác suất để 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
Cho 8 điểm, trong đó không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 8 điểm trên?
Một trường THPT có 18 học sinh giỏi toàn diện, trong đó có 11 học sinh khối 12, 7 học sinh khối 11. Chọn ngẫu nhiên 6 học sinh từ 18 học sinh trên để đi dự trại hè. Xác suất để mỗi khối có ít nhất 1 học sinh được chọn là
Amelia có đồng xu mà khi tung xác suất mặt ngửa là và Blaine có đồng xu mà khi tung xác suất mặt ngửa là . Amelia và Blaine lần lượt tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và Amelia chơi trước. Xác suất Amelia thắng là trong đó p và q là các số nguyên tố cùng nhau. Tìm q - p?
Một ngân hàng đề thi có 50 câu hỏi khác nhau, trong đó có 40% câu hỏi ở mức độ nhận biết, 20% câu hỏi ở mức độ thông hiểu, 30% câu hỏi ở mức độ vận dụng và 10% câu hỏi ở mức độ vận dụng cao. Xây dựng 1 đề thi trắc nghiệm gồm 50 câu hỏi khác nhau từ ngân hàng đề thi đó bằng cách xếp ngẫu nhiên các câu hỏi. Tính xác suất để xây dựng được 1 đề thi mà các câu hỏi được xếp theo mức độ khó tăng dần: nhận biết-thông hiểu-vận dụng-vận dụng cao. (chọn giá trị gần đúng nhất)
Một con thỏ di chuyển từ địa điểm A đến địa điểm B bằng cách qua các điểm nút (trong lưới cho ở hình vẽ) thì chỉ di chuyển sang phải hoặc đi lên (mỗi cách di chuyển như vậy xem là 1 cách đi). Biết nếu thỏ di chuyển đến nút C thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí B.
Cho tập hợp A = {2;3;4;5;6;7}. Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau được thành lập từ các chữ số thuộc A?
Tính số cách xếp 5 quyển sách Toán, 4 quyển sách Lý và 3 quyển sách Hóa lên một giá sách theo từng môn.