Danh sách lớp của bạn Nam đánh số từ 1 đến 45. Nam có số thứ tự là 21. Chọn ngẫu nhiên một bạn trong lớp để trực nhật. Tính xác suất để chọn được bạn có số thứ tự lớn hơn số thứ tự của Nam.
A.
B.
C.
D.
Đáp án D.
Gọi A:”Bạn được chọn có số thứ tự lớn hơn số thứ tự của Nam”.
Một thầy giáo có 12 cuốn sách đôi một khác nhau, trong đó có 5 cuốn sách văn học, 4 cuốn sách âm nhạc và 3 cuốn sách hội họA. Thầy muốn lấy ra 6 cuốn và đem tặng cho 6 học sinh mỗi em một cuốn. Thầy giáo muốn rằng sau khi tặng xong, mỗi một trong 3 thể loại văn học, âm nhạc, hội họa đều còn lại ít nhất một cuốn. Hỏi thầy có tất cả bao nhiêu cách tặng?
Trong một cuộc thi có 10 câu hỏi trắc nghiệm, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Với mỗi câu, nếu chọn phương án trả lời đúng thì thí sinh sẽ được cộng 5 điểm, nếu chọn phương án trả lời sai sẽ bị trừ 1 điểm. Tính xác suất để một thí sinh làm bài bằng cách lựa chọn ngẫu nhiên phương án được 26 điểm, biết thí sinh phải làm hết các câu hỏi và mỗi câu hỏi chỉ chọn duy nhất một phương án trả lời . (chọn giá trị gần đúng nhất)
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giáccó các đỉnh là các đỉnh của đa giá trên. Tính xác suất để chọn được một tam giác từ tập X là tam giác cânnhưng không phải là tam giác đều.
Ba người xạ thủ A1, A2, A3 độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của A1, A2, A3 tương ứng là 0,7; 0,6 và 0,5. Tính xác suất để có ít nhất một xạ thủ bắn trúng.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình tới nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Có bao nhiêu số chẵn có 4 chữ số đôi một khác nhau và lớn hơn 5000?
Đề thi trắc nghiệm môn Toán gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án trả lời đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh không học bài nên mỗi câu trả lời đều chọn ngẫu nhiên một phương án. Xác suất để học sinh đó được đúng 5 điểm là:
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b. Tính xác xuất để 3 điểm được chọn tạo thành một tam giác.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán bằng:
Xếp ngẫu nhiên 7 học sinh nam và 3 học sinh nữ ngồi xung quanh một bàn tròn. Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:
Trong một kì thi. Thí sinh được phép thi 3 lần. Xác suất lần đầu vượt qua kì thi là 0,9. Nếu trượt lần đầu thì xác suất vượt qua kì thi lần hai là 0,7. Nếu trượt cả hai lần thì xác suất vượt qua kì thi ở lần thứ ba là 0,3. Xác suất để thí sinh thi đậu là
Một mạch điện gồm 4 linh kiện như hình vẽ, trong đó xác suất hỏng của từng linh kiện trong một khoảng thời gian t nào đó tương ứng là 0,2; 0,1; 0,05 và 0,02. Biết rằng các linh kiện làm việc độc lập với nhau và các dây luôn tốt. Tính xác suất để mạng điện hoạt động tốt trong một khoảng thời gian t.
Có bao nhiêu cách chia 8 đồ vật khác nhau cho 3 người sao cho có một người được 2 đồ vật và hai người còn lại mỗi người được 3 đồ vật?
Trong một hòm phiếu có 9 lá phiếu ghi các số tự nhiên từ 1 đến 9 (mỗi lá ghi một số, không có hai lá phiếu nào được ghi cùng một số). Rút ngẫu nhiên cùng một lúc hai lá phiếu. Tính xác suất để tổng của hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 15.
Lập số có 9 chữ số, mỗi chữ số thuộc thuộc tập hợp 1,2,3,4 trong đó chữ số 4 có mặt 4 lần, chữ số 3 có mặt 3 lần, các chữ số còn lại có mặt đúng một lần. Số các số lập được là: