Một hộp đựng 20 viên bi khác nhau được đánh số từ 1 đến 20. Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại. Hỏi có bao nhiêu cách lấy để kết quả thu được là một số chia hết cho 3?
A. 90
B. 1200
C. 384
D. 1025
Chọn C
20 viên bi khác nhau được đánh số từ 1 đến 20, chia làm ba phần:
Phần 1 gồm các viên bi mang số chia hết cho 3, có 6viên.
Phần 2 gồm các viên bi mang số chia cho 3 dư 1, có 7 viên.
Phần 3 gồm các viên bi mang số chia cho 3 dư 2, có 7 viên.
Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại, được một số chia hết cho 3 có các trường hợp sau:
Trường hợp 1: lấy được 3 viên bi ở phần 1, có cách.
Trường hợp 2: lấy được 3 viên bi ở phần 2, có cách.
Trường hợp 3: lấy được 3 viên bi ở phần 3, có cách.
Trường hợp 4: lấy được 1 viên bi ở phần 1, 1 viên bi ở phần 2 và 1 viên bi ở phần 3, có cách.
Vậy có cách lấy được ba viên bi thỏa mãn yêu cầu bài toán.
Trong mặt phẳng cho 10 điểm phân biệt. Số vectơ khác , có điểm đầu và điểm cuối lấy trong các điểm đã cho là
Từ các chữ số thuộc tập X = {0;1;2;3;4;5;6;7} có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số khác nhau sao cho mỗi số tự nhiên đó đều chia hết cho 18.
Cho k, n (k < n) là các số nguyên dương bất kì. Mệnh đề nào sau đây đúng?
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ?
Số cách chọn ra 3 học sinh trong số 10 học sinh không tính thứ tự là
Sắp xếp 20 người vào 2 bàn tròn A, B phân biệt, mỗi bàn gồm 10 chỗ ngồi. Số cách sắp xếp là
Cuối năm học trường Chuyên Sư phạm tổ chức 3 tiết mục văn nghệ chia tay khối 12 ra trường. Tất cả các học sinh lớp 12A đều tham gia nhưng mỗi người chỉ được đăng kí không quá 2 tiết mục. Biết lớp 12A có 44 học sinh, hỏi có bao nhiêu cách để lớp lựa chọn?
Cho tập hợp S có 12 phần tử. Hỏi có bao nhiêu cách chia tập hợp S thành hai tập con (không kể thứ tự) mà hợp của chúng bằng S ?
Trong mặt phẳng cho 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng. Số tam giác có các đỉnh thuộc 18 điểm đã cho là
Một lớp có 33 học sinh, cần chọn ra 6 học sinh để trực trường vào buổi chiều. Hỏi có bao nhiêu cách chọn?